
CHAPTER 2

INTRODUCTION TO BASIC
Fundamental Concepts and Language Structure

BASIC is different from other programming languages in its concern for
the inexperienced user. Although it is a general-purpose programming
language, it is designed primarily to be easy to learn, easy to use, and easy
to remember. BASIC is oriented toward, but not restricted to, interactive use.
Its statement structure is kept simple, and special rules are kept to a minimum.
A BASIC program is meant to be simple so that even a novice is able to deter-
mine what the program is expected to do on the basis of examination. Only
a little knowledge of BASIC is required to solve simple problems.

Simple BASIC programs can be used much like a small calculator. You
might want to ask the computer to multiply 4 times 25 and print the results.
The following example shows you how to accomplish this:

You keyed three lines into the computer. In the first line, line number 10,
you told the computer to calculate 4 times 25 and print the answer (* in BASIC
means multiply). In the second line, line number 20, you told the computer
there were no more instructions in the program. The last command you gave
the computer was RUN, a system command which tells the computer to
execute the instructions and give the results. The computer multiplied 4 times
25 and gave the answer, which is 100.

As simple as it may seem, this is a computer program. The same function
which took only one statement in BASIC, would take several lines of coding
in other high-level programming languages such as COBOL or FORTRAN.

STATEMENT STRUCTURE

The instructions which are preceded by line numbers are called statements.
A complete set of statements to solve a problem is called a program. The very
last statement in each program must be the END statement.

2-1

INTRODUCTION TO PROGRAMMING IN BASIC

Program statements in the BASIC language can be constructed in free form.
The various parts must all appear, however, and be given in a definite order,
as shown below:

STATEMENT NUMBER.—(Frequently referred to as line number). This
number has two vital functions: (1) to identify the statement itself (statement
label); and (2) to indicate to the BASIC compiler (interpreter) where you want
this statement placed in the program sequence. The statement number must
be an integer (a whole number—no decimal parts or fractions). For the pur-
pose of this text, the range for statement numbers is from 1 to 99999. However,
the number of digits may vary depending on the computer you are using. Table
2-1 shows examples of statements with valid and invalid statement numbers.

Table 2-1.—BASIC Statement Numbers

BASIC LANGUAGE KEYWORD.—Keywords are used to tell the com-
puter what function is to be performed by this statement. For example, LET,
PRINT, INPUT, and END as shown in Table 2-1. These and other keywords
will be introduced and discussed as appropriate throughout the remaining
chapters. The spelling of each keyword must be exact, or the compiler (inter-
preter) will tell you this is an invalid statement.

DESCRIPTIVE INFORMATION.—This information completes the
description of the function to be performed and varies with the keyword used.
See the first three examples in Table 2-1. There area few instances where no
additional information is required or allowed. See the last example in Table 2-1.

In order to write these statements, you must first know the syntax; that
is, the characters and symbols used to construct the statements, as well as
the rules, conventions, and special features of the language. This includes the
character set and the methods used to represent numbers and predefined
functions.

2-2

Chapter 2—INTRODUCTION TO BASIC

The BASIC Character Set

There are three types of characters used in BASIC. These are: (1)
alphabetic, (2) numeric, and (3) special characters.

ALPHABETIC CHARACTERS.—The alphabetic characters used in
BASIC are the standard English alphabet, A through Z.

NUMERIC CHARACTERS .—The numeric characters used in BASIC are
the digits 0 through 9.

SPECIAL CHARACTERS.—The following are special characters used
in BASIC:

Blank

Equal sign or assignment
symbol

Plus sign

Minus sign

Asterisk or multiply symbol

Slash or divide symbol

Up-arrow or exponentiation
symbol

Right parenthesis

Left parenthesis

Comma

Point or period

Single quotation mark

Double quotation mark

Semicolon

Colon

Exclamation symbol

Question mark

Ampersand

Less than symbol

Greater than symbol

Number or pound sign

Dollar sign

Percent sign

OTHER SPECIAL CHARACTERS.—Some special characters are com-
bined to form other elements in BASIC. The following list shows these com-
binations:

> = greater than or equal

< = less than or equal

<> not equal

** exponentiation

BASIC Numbers

When you are using numeric data in a BASIC program, there are certain
conventions that must be adhered to. You cannot use “$” (dollar sign), ‘‘, ”

2-3

INTRODUCTION TO PROGRAMMING IN BASIC

(comma), or the “/” (slash) in a BASIC number. There are also restrictions
on the number of digits that can be used in one data element. The number
of digits may vary depending upon the computer you are using. Refer to your
user’s manual for specific instructions. Table 2-2 shows examples of
correctly and incorrectly coded BASIC numbers.

Table 2-2.—BASIC Numbers

Valid BASIC Invalid BASIC
Numbers Numbers Explanation

99.95 $99.95 Dollar sign cannot be used

100000.00 100,000.00 Comma cannot be used

+5678901.2 +567890100 Too many digits, only eight are
allowed (decimal points, positive
and negative signs do not count).

.25 1/4 Slash cannot be used; however,
this is a valid expression as an
arithmetic operation (1 divided
by 4).

SCIENTIFIC NOTATION.—As seen in Table 2-2, in the third example,
we have a number, +567890100, with too many digits. You may ask, how
do we represent very large and very small numbers? Scientific notation is
used. In scientific notation numbers are expressed in terms of a figure
between 1 and 10 times a power of 10. The number 567890100 would be
written 5.678901 x 108 in scientific notation. This method uses exponent form
and is commonly called E notation, E form or E format. In BASIC, E nota-
tion is formed by adding the letter E and a positive or negative integer to a
BASIC number. For example, E8 means “times 10 to the 8th power.”

5 .678901E8 = 5.678901 × 1 08 = 567890100

Table 2-3 shows other examples of the use of E notation.

Table 2-3.—E Notation

Number using Interpreted
E notation as Explanation

5.5E8 550,000,000 The decimal has been moved
eight places to the right

5.5E-8 0.000000055 The decimal has been moved
eight places to the left

–2.54321E10 –25,432,100,000 The decimal has been moved
ten places to the right

–2.54321E-5 –0.0000254321 The decimal has been moved
five places to the left

2-4

Chapter 2—INTRODUCTION TO BASIC

Since we’re multiplying by powers of 10, the integer following the E indicates
how many positions and in what direction to move the decimal point. If the
integer after the letter “E” is negative, you move the decimal point to the
left; if the integer is positive, you move the decimal point to the right.

Predefine Functions

Some mathematical functions, for example, square root and tangent, are
used so frequently that they have been incorporated into the BASIC language
as predefine functions. You can use these to compute the same mathematical
function with many different values. Rather than writing the coding required
to do each calculation, you may use the “function” capability of the BASIC
language. For example:

This will cause the computer to calculate the square root of 36 and assign
that value to X. Table 2-4 shows a list of some of these predefine mathematical
functions.

Table 2-4.—Predefined Functions

FUNCTION DESCRIPTION

ABS (X) Absolute value of X

ATN (X) Arc tangent of X in radian measure

COS (X) Cosine of X in radian measure

EXP (X) Natural exponential of X

INT (X) The largest integer not greater than X

LOG (X) Natural logarithm of X (base e)

RND (X) Generates random numbers between 0 and 1

SGN (X) Algebraic “sign” of X: -1 if X<0,
0 if X=0, and +1 if X>0

SIN (X) Sine of X in radian measure

SQR (X) Square root of X

TAN (X) Tangent of X in radian measure

FUNDAMENTAL CONCEPTS

Up to this point, we have been discussing the mechanics of the BASIC
programming language. We will now discuss fundamental concepts and how

2-5

INTRODUCTION TO PROGRAMMING IN BASIC

you use these in your interaction with the computer in keying in and running
your programs. This will include more about statement numbers, spacing
within statements, keying statements into the computer, methods of
correcting mistakes, how the computer responds when your program contains
a syntax error, and the use of the REMARK statement.

Assigning Statement Numbers

Duplicate statement numbers are not allowed. If two statements are entered
with the same statement number, the computer will accept the second state-
ment with the duplicate statement number and replace the first.

When assigning statement numbers, it is a good idea to increment them
by 10; this will allow you to insert additional statements between existing
statements in your program later. This is not mandatory, but it is a good
practice. This technique will prevent you from having to completely renumber
a program, if you find you need to add a statement after you have completed
writing your program. The following example shows how this technique works:

In this example the PRINT statement, which is needed to print the results
from your calculations was omitted. Since the line numbers were incremented
by 10, it was easy to assign the PRINT statement a line number between 60
and 70.

When the program is run or you list your program, the PRINT statement,
line number 65, will be inserted in its proper place by the computer.

2-6

Chapter 2—INTRODUCTION TO BASIC

Spacing Within Statements

Spacing within statements in your program is not very important, the com-
puter generally ignores spaces except those within quotation marks. For
example, one of the sample programs used earlier could be written this way:

OR:

or various other ways. However, as a matter of practice, you will want to
use spacing that provides clarity and maintains the integrity of the statement.
Appropriate use of spaces within a line will make the line easier for you and
others to read and understand.

The sample program below is an example of the recommended spacing
within statements:

10 REMARK THIS PROGRAM CONVERTS INCHES TO CENTIMETERS

20 INPUT 1

30 LET C = 1*2.54

40 PRINT “INCHES”,“CENTIMETERS”

50 PRINT I,C

60 END

In this example, we have used spacing techniques similar to those you would
use in ordinary typing.

KEYING IN A PROGRAM

Once you have written a program and have a computer available, you are
ready to key in your BASIC program. The procedures for this will vary,
depending upon the computer system you are using. Consult your user’s
manual for procedures for your specific computer.

Keying Statements

To enter BASIC statements, you key in the statement beginning with the
statement (line) number, after the prompt on the terminal. Once you have
completed the statement, depress the RETURN key. Only one statement may
be entered per line. Some computers are equipped with an automatic line
numbering feature which will automatically number your statements,
incrementing them by 10.

2-7

INTRODUCTION TO PROGRAMMING IN BASIC

It is not necessary to key in your BASIC statements in sequence by line
number. The computer will sort the statements by line number and place them
in ascending sequence, regardless of the sequence in which you keyed them
in. The following example shows what we mean:

You forgot to type in line 50 when you initially entered your program,
but that is not a catastrophe. You can enter it after line 60. By entering the
system command LIST, you will find line 50 has been placed in the proper
sequence in the program. Your listing will look like this:

Correcting Mistakes

At one time or another, we all make mistakes when we’re keying in
statements. For that reason, ways are provided for you to make corrections.
These may vary depending on the computer you’re using. On many computers,
the statements you key in are not sent to the interpreter until you have depressed
the RETURN key. Should you make a mistake in a statement before you have
depressed the return key, you can backspace with the backspace key and key
the correct information.

For example:

you typed

but you intended to type an asterisk (multiply) instead of a plus sign
(addition). You can correct it by backspacing once and keying the correct
information. The * (asterisk) will replace the + (plus), then you continue by
keying the rest of the statement.

2-8

Chapter 2—INTRODUCTION TO BASIC

Should you make more than one mistake in a line, use one backspace for
each character you want to erase or replace.

If you make a mistake in a statement and you have already entered the
statement, you will have to correct it in another way. The following examples
show how it can be done.

Suppose you had entered the following program:

Lines 10 and 70 contain errors. You can correct them by simply retyping the
lines as they should be.

These will overlay (replace) the original lines 10 and 70. If you list or display
your program after making these changes, it will appear as follows:

Lines 10 and 70 which were originally entered incorrectly were replaced
by the retyped lines and are in correct form and in proper sequence in the

2-9

INTRODUCTION TO PROGRAMMING IN BASIC

program. As we stated earlier, duplicate line numbers are not allowed and
the second statement entered with the same line number will overlay or replace
the first.

Some computers have an EDIT/RECALL feature which allows you to
enter the line number you want to correct and then depress EDIT/RECALL.
It will display this line on the screen and allow you to make changes to it.

You may also delete a line by typing the command DELETE and the line
number, for example:

This will delete line 50.

Another way to delete a line is to type in only the line number and depress
the RETURN key, for example:

This will also delete line 50.

When you are keying in your program, some computers will check for
syntax errors as each statement is entered. Others will check for syntax errors
when you enter the system command RUN. In either case, you’11 get an
error message indicating where there is a syntax error. (See the following
example.) These errors must be corrected before the program can be executed.

Look at line 60, find the error. The)Y is incorrect; the) should not be
there. Now that you know what the error is, you can use one of the methods
discussed to correct it and try again.

Unfortunately, at this stage, the computer can only find syntax errors,
it cannot determine if you have made a logic error. Logic errors will be found
when you try to run the program during debugging and testing.

2-10

Chapter 2—INTRODUCTION TO BASIC

To help find logic errors, you may find it useful to include some documen-
tation about the program within it. To do this, you use the REMARK
statement.

REMARK Statement

All languages provide the capability for inserting programmer comments
to make the program listing more readable and to aid in testing and documen-
ting the program. In BASIC, the keyword REMARK (which may be
abbreviated REM) is used. The REMARK statement is a nonexecutable state-
ment; that is, the REM and following comments appear only in the listing
of the program and do not, in any way, affect execution of the program.

FORMAT:

statement keyword any programmer comments
number

When a statement with the keyword REMARK is used, the entire line on
which the statement appears is considered a comment.

The following example shows how the REMARK statement is used to
document a program so that anyone can understand what the program is
used for:

Not only can REMARK statements be used at the beginning of a program,
they can be used throughout the program to separate different segments of
a program and to introduce subroutines or loops.

SUMMARY

BASIC is designed to be easy to learn, easy to use, and easy to remember.
BASIC programs are meant to be simple so that even a novice can under-
stand them.

Instructions which are preceded by line numbers are called program
statements. The parts of a statement are: statement (line) number, keyword,
and descriptive information.

2-11

INTRODUCTION TO PROGRAMMING IN BASIC

The BASIC character set is divided into three categories: alphabetic,
numeric, and special characters. E notation (scientific notation) is used for
representing very large and very small numbers. BASIC has included several
predefined functions so that you don’t have to code some of the more
common mathematical functions.

Line numbers tell the computer the sequence of the instructions in your
program. It is a good practice to increment your line numbers by 10 to allow
for inserting additional statements between existing statements in your
program. Spacing within a line is not important; however, appropriate use
of spaces within a line makes it easier for you and others to read and under-
stand. The first step in entering in a statement is keying in the line number.

You do not have to key the BASIC statements in sequence, the computer
sorts them into line number sequence. The system command LIST causes your
program to be listed with the statements in ascending sequence by line number.
The system command RUN is used to tell the computer to execute the
program.

Unfortunately the computer does not detect logic errors; you will have
to find those through testing and debugging.

The REMARK statement is used to aid in documenting your program.

2-12

CHAPTER 2

EXERCISES

1. Arrange the following statement elements in proper order according
to the BASIC statement structure and label the parts.

2. Which of the following are correctly coded BASIC line numbers?
For those incorrectly coded, what is wrong with them?

A. 20 F. 54321
B. 25 G. 123456
C. 30 H. 99999
D. 1/4 I. #9999
E. 9.99 J. .2500

3. Convert the following numbers in E notation into the numbers they represent.

A. 2.5E3
B. –1.5E2
C. 9.9E-5
D. –3.5E6

4. Which of the following are correctly coded numbers? For those
incorrectly coded, what is wrong with them?

A. 95 E. .95
B. 9,500 F. 52
C. $100.00 G. 65$
D. 1/4 H. 74

5. A. If you typed the following BASIC program into the computer and
gave the system command LIST, what would the listing look like?

B. If you then typed the system command RUN, what would be printed?

2-13

CHAPTER 2

EXERCISE ANSWERS

1. 40 PRINT A,B,C,

line #, keyword, descriptive information

2. correctly coded line numbers

A,B,C,F,H

incorrectly coded line numbers

D. 1/4 must be a whole number
E. 9.99 cannot contain a decimal point
G. 123456 maximum number allowed is 99999
1. #9999 cannot contain special characters
J. .2500 cannot contain a decimal point

3. A. 2500.0
B. -150.0
C. 0.000099
D. -3500000.0

4. correctly coded numbers

A,E,F,H

incorrectly coded numbers

B. 9,500 cannot contain commas
C. $100.00 cannot contain $
D. 1/4 cannot contain special characters except decimal points
G. 65$ cannot contain $

5. A. 10 LET A = 2

15 LET B = 4

20 LET C = 8

2 5 PRINT “TOTAL”

30 PRINT A+B+C

40 E N D

B. TOTAL

14

2-14

	ERRATA #1
	CONTENTS
	CHAPTERS

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	PAGES

	PAGE 1-1
	PAGE 1-3
	PAGE 1-4
	PAGE 1-5
	PAGE 1-6
	PAGE 1-7
	PAGE 1-8
	PAGE 1-9
	PAGE 1-10
	PAGE 1-11
	PAGE 1-12
	PAGE 1-13
	PAGE 1-14
	PAGE 1-15
	PAGE 1-16
	PAGE 1-19
	PAGE 2-1
	PAGE 2-2
	PAGE 2-3
	PAGE 2-4
	PAGE 2-5
	PAGE 2-6
	PAGE 2-7
	PAGE 2-8
	PAGE 2-11
	PAGE 2-12
	PAGE 2-14
	PAGE 3-1
	PAGE 3-2
	PAGE 3-5
	PAGE 3-7
	PAGE 3-8
	PAGE 3-10
	PAGE 3-11
	PAGE 3-12
	PAGE 3-13
	PAGE 3-14
	PAGE 3-15
	PAGE 3-19
	PAGE 4-1
	PAGE 4-3
	PAGE 4-4
	PAGE 4-6
	PAGE 4-7
	PAGE 4-8
	PAGE 4-9
	PAGE 4-13
	PAGE 4-14
	PAGE 4-17
	PAGE 4-21
	PAGE 5-1
	PAGE 5-2
	PAGE 5-3
	PAGE 5-4
	PAGE 5-5
	PAGE 5-6
	PAGE 5-7
	PAGE 5-8
	PAGE 5-9
	PAGE 5-11
	PAGE 5-12
	PAGE 5-13
	PAGE 5-14
	PAGE 5-16
	PAGE 5-24
	PAGE 6-1
	PAGE 6-4
	PAGE 6-5
	PAGE 6-7
	PAGE 6-14
	PAGE 7-1
	PAGE 7-2
	PAGE 7-3
	PAGE 7-4
	PAGE 7-5
	PAGE 7-6
	PAGE 7-7
	PAGE 7-13
	PAGE AI-1
	PAGE AI-2
	PAGE AII-1
	PAGE AII-2
	PAGE AIII-1
	PAGE AIII-2

	FIGURES

	FIGURE 1-1
	FIGURE 1-2
	FIGURE 1-3
	FIGURE 1-4
	FIGURE 1-5
	FIGURE 1-6
	FIGURE 4-1
	FIGURE 4-2
	FIGURE 5-1
	FIGURE 7-1
	FIGURE 7-2

	TABLES

	TABLE 2-1
	TABLE 2-2
	TABLE 2-3
	TABLE 2-4
	TABLE 3-1

	APPENDIX

	APPENDIX I
	APPENDIX II

	INDEX
	NRTC
	ASSIGNMENT 1
	ASSIGNMENT 2

